A Mechanism for Sustained Cellulose Synthesis during Salt Stress

نویسندگان

  • Anne Endler
  • Christopher Kesten
  • René Schneider
  • Yi Zhang
  • Alexander Ivakov
  • Anja Froehlich
  • Norma Funke
  • Staffan Persson
چکیده

Abiotic stress, such as salinity, drought, and cold, causes detrimental yield losses for all major plant crop species. Understanding mechanisms that improve plants' ability to produce biomass, which largely is constituted by the plant cell wall, is therefore of upmost importance for agricultural activities. Cellulose is a principal component of the cell wall and is synthesized by microtubule-guided cellulose synthase enzymes at the plasma membrane. Here, we identified two components of the cellulose synthase complex, which we call companion of cellulose synthase (CC) proteins. The cytoplasmic tails of these membrane proteins bind to microtubules and promote microtubule dynamics. This activity supports microtubule organization, cellulose synthase localization at the plasma membrane, and renders seedlings less sensitive to stress. Our findings offer a mechanistic model for how two molecular components, the CC proteins, sustain microtubule organization and cellulose synthase localization and thus aid plant biomass production during salt stress. VIDEO ABSTRACT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of cellulose acetate nanofibers and its application in the release of some drugs

Objective(s): The purpose of this study was to compare novel sandwich-structured nanofibrous membranes, and coaxial and usual methods, to provide sustained-release delivery of morphine for drug delivery. In this work, synthesis ofnanofibrous cellulose acetate (NFC) was carried out by electrospinning. Methods: A weighed amount of cellulose acetate (CA) pow...

متن کامل

Synthesis and characterization of optically active polyester thin-film bionanocomposite membrane achieved by functionalized cellulose /silica for gas permeation

Optically active bionanocomposite membranes composed of polyester(PE) and cellulose /silica bionanocomposite (BNCs) are a novel method to enhance gas separation performance. Commercially available silica nanoparticles were modified with biodegradable nanocellulose through ultrasonic irradiation technique. Transmission electron microscopy (TEM) analyses showed that the cellulose/silica composite...

متن کامل

Synthesis and characterization of optically active polyester thin-film bionanocomposite membrane achieved by functionalized cellulose /silica for gas permeation

Optically active bionanocomposite membranes composed of polyester(PE) and cellulose /silica bionanocomposite (BNCs) are a novel method to enhance gas separation performance. Commercially available silica nanoparticles were modified with biodegradable nanocellulose through ultrasonic irradiation technique. Transmission electron microscopy (TEM) analyses showed that the cellulose/silica composite...

متن کامل

Green synthesis of Se nanoparticles and its effect on salt tolerance of barley plants

In this study, selenite ions were reduced to selenium nanoparticles using a leaf extract of barley (Hordeum vulgare L.) plants. Characterization of synthesized nanoparticles using Scanning Electron Microscopy (SEM) and UV-visible spectrophotometry indicated the formation of variable size of selenium nanoparticles, suggesting that leaf extract could form polydispersed nanoparti...

متن کامل

P-240: Does Ciprofloxacin Exert Severe Oxidative Stress in Testicular Tissue?

Background: Ciprofloxacin was shown to have cytotoxic effects on testicular germ cells. Its mechanism of cytotoxic action is not fully understood. To investigate the possibility of the involvement of an oxidative stress induction in this mechanism, total antioxidant power (TAOP) in the testis was evaluated. Materials and Methods: A number of twenty four mature male NMRI mice were used.The anima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 162  شماره 

صفحات  -

تاریخ انتشار 2015